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Abstract. A generalized Hylleraas-type basis set with three nonlinear parameters is proposed to study
three-body systems interacting via coulomb forces within the framework of non-relativistic quantum me-
chanics. This basis set improves the rate of convergence with respect to previous ones, specially for non-
symmetric systems and excited states of two electron atoms. Accurate binding energies and other properties
for S-states of helium-like ions, muonic molecules and the positronium negative ion are reported.

PACS. 36.10.Dr Positronium, muonium, muonic atoms and molecules – 31.25.-v Electron correlation
calculations for atoms and molecules – 31.15.Pf Variational techniques

1 Introduction

Accurate determination of bound state properties of three
body systems is currently the focus of much research.
Since the pioneering work of Hylleraas [1] including ex-
plicitly the interparticle distance in the wave function, the
variational method using a basis set expansion has been
widely employed. For S-states of atomic systems the most
precise eigenvalues have been obtained by including loga-
rithmic terms in the basis set [2,3] or by using the double
basis set of Drake and collaborators [4,5]. For molecular
systems such as H+

2 and some other three body systems
with a wide range of mass ratio of the constituent par-
ticles, different analytical parameterizations of the basis
functions have been proposed to obtain binding energies
and other properties [6–23]. Other techniques such as the
finite-element method [25,26] and the hyperspherical har-
monic method [27,28] have been also used for those sys-
tems providing very accurate results.

One of the most used basis sets is that of Pekeris [29],
who worked with the isoperimetric coordinates introduced
by Coolidge and James [30], and which consists on the
product of three Laguerre polynomials multiplied by an
exponential. The main advantage of this basis set is that
the number of nonzero matrix elements is linear with the
dimension of the basis, i.e. this basis is quasi-orthogonal,
which allows one to work in double precision even for large
values of the dimension of the truncated basis. This basis
set has been recently twofold modified to include one [9,31,
32] and two [14] variational parameters in the exponential.
Both generalizations greatly improve the convergency of
the basis set, being the second one specially appropriate
to study those systems of a molecular nature, i.e. those

a e-mail: galvez@ugr.es

systems for which one mass is much lighter than the other
two.

The aim of this work is twofold. First we introduce
a generalization of the Pekeris basis set that includes
a third non linear parameter to study different three-
body Coulomb systems. This generalization was previ-
ously introduced in [33] to study S-wave resonances of
helium, although the variational parameters were not cho-
sen completely free. This modification will keep the quasi-
orthogonal character of the basis set for systems with three
non-identical particles. However, this property will not be
fulfilled for the rest of three-body systems because of the
antisymmetry of the wave function.

Secondly, the performance of this basis set is studied
in a wide range of three body systems by comparing the
rate of convergence with those of the basis sets with one
and two non-linear free parameters. As we shall see later,
the basis set used in this work improves the convergence
specially in the case of non-symmetric three body systems,
i.e. those with all the particles different. Besides we shall
calculate different global properties, such as the expecta-
tion values 〈rkij〉, and some local properties, such as the
expectation values 〈δ(rij)〉, which play an important role
for any few-body system in the calculation of relativistic
corrections, hyperfine structure, quantum electrodynamic
and weak interaction effects [34,35].

The scheme of the present work is the following. In the
next section we shall introduce the basis set used in this
work. In Section 3 a study of the convergence is performed
in terms of the number of non-linear variational param-
eters. We shall also present the best results provided by
this basis set as compared with the most accurate values
known in the literature for the systems above mentioned.
Finally some conclusions can be found in Section 4.
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2 Wave functions and densities

The Hamiltonian of a three body Coulomb system in a
state of S-type can be written, once subtracted the center
of mass motion, in terms of the three relative distances
among the particles. In this work we shall use the so called
isoperimetric coordinates defined as u = −r12 + r13 + r23,
v = r12− r13 + r23 and w = r12 + r13− r23, introduced by
Coolidge and James [30], being the range of each one of
them from zero to infinity. Here rij is the distance between
the particles i and j. The Hamiltonian of a three-body
Coulomb system in terms of these coordinates, in units
~ = e = 1, is

see equation (1) above

where mi and qi, i = 1, 2, 3, are the mass and the charge,
respectively, of the particle i.

The basis functions used in this work are

Lk(αu)Ll(βv)Lm(γw)e−αu/2e−βv/2e−γw/2 (2)

where Lk(x) is the Laguerre polynomial of degree k, and
α, β and γ are non-linear variational parameters. Most of
the overlap matrix elements are zero in such a way that
there will be no numerical problems in making the diago-
nalization for any number of states in the basis in a double
precision calculation. For systems with three different par-
ticles, the wave function will be expanded as follows

Ψ(u, v, w) = e−[αu+βv+γw]/2

×
∑
k,l,m

CklmLk(αu)Ll(βv)Lm(γw). (3)

where k + l + m ≤ N . In the case that the system under
study has two identical particles, the expression of the
Hamiltonian reduces to a simpler one as can be seen, for
example, in [14]. The wave function used to describe the
1S states of these systems is given by

Ψ(u, v, w) = e−γw/2

×
∑
m

∑
k≤l

Cklm
[
e−αu/2Lk(αu)e−βv/2Ll(βv)

+ e−βu/2Ll(βu)e−αv/2Lk(αv)
]
Lm(γw) (4)

since for singlet states the spatial wave function must be
symmetric for the two identical particles, which will be
labeled 2 and 3 hereafter. It must be also mentioned that
in the case α 6= β the quasi-orthogonality presented above
is greatly reduced due to the symmetrization. This ba-
sis generalizes the one proposed by Pekeris [29] who used
α = β = γ/2, being α the square root of minus the binding
energy of the corresponding eigenstate. Later α was taken
as a variational parameter [31,32], increasing the rate of
convergence. The basis set with only a non-linear varia-
tional parameter has worked very well for atomic systems
providing accurate results with short expansions. How-
ever the rate of convergence is reduced when is used to
study systems of molecular nature such as H+

2 [13,14,19].
The inclusion of a second non-linear variational parameter
has allowed to increase the convergence without losing the
quasi-orthogonality (α = β, γ) [14].

With the best eigenfunction one can calculate ana-
lytically the different interparticle densities and related
properties such as their radial moments. In the general
case of non-symmetric systems, we can consider three
different interparticle distributions. These, ρij(r), with
i, j = 1, 2, 3 (i 6= j) are defined by

ρij(r) =
∫

dr12dr13δ(r− rij)|Ψ(r12, r13, r23)|2 (5)

and give us the probability density of finding the particle i
separated by the vector r from the particle j. These three
functions are spherically symmetric for all the states and
systems here studied, so they will be hereafter denoted by
ρij(r).

Using the wave function given by equation (3), it is
possible to evaluate analytically all the integrals required
to build the densities. For non-symmetric systems it is
obtained

ρij(r) = e−2αir
2N∑
k=−1

aij,kr
k + e−2αjr

2N∑
k=−1

bij,kr
k (6)

with aij,−1 = −bij,−1, α1 = γ, α2 = β, α3 = α valid
when αi 6= αj . Let note that ρij is not divergent at the
origin because the restriction aij,−1 = −bij,−1. In the case
αi = αj the expression becomes

ρij(r) = e−2αir
2N+2∑
k=0

dij,kr
k. (7)
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Table 1. Convergence study of the basis sets with one, two and three non-linear variational parameters. The results are in
atomic units except the π+µ+π− and d+t+µ−∗ for which muonic units have been used. For each value of the parameter N there
are three entries corresponding to the basis with one [1], two [2] and three [3] non linear parameters. We also show the best
ground state eigenvalues of the systems from references [8,14,21,38], and this work, respectively.

N [B] H− H+
2 31S He

5[1] −0.527 401 963 −0.583 234 64 −1.957 535 36

5[2] −0.527 402 591 −0.591 836 06 −1.964 156 04

5[3] −0.527 428 556 −0.591 941 03 −2.060 930 02

12[1] −0.527 445 850 −0.594 672 48 −2.060 854 77

12[2] −0.527 445 851 −0.596 993 55 −2.060 910 35

12[3] −0.527 445 866 −0.597 005 34 −2.060 988 81

15[1] −0.527 445 876 636 −0.596 006 26 −2.060 981 68

15[2] −0.527 445 876 647 −0.597 124 43 −2.060 982 06

15[3] −0.527 445 878 154 −0.597 124 75 −2.060 989 03

Exact −0.527 445 881 114 −0.597 139 063 123 −2.060 989 082 352

N [B] e−e+e− N [B] π+µ+π− d+t+µ−∗

5[1] −0.261 957 584 5[1] −0.329 920 916 −0.484 357 04

5[2] −0.261 957 585 5[2] −0.329 926 422 −0.487 287 42

5[3] −0.261 996 705 5[3] −0.330 701 092 −0.487 332 20

12[1] −0.262 005 012 935 8[1] −0.330 829 436 −0.487 904 45

12[2] −0.262 005 012 937 8[2] −0.330 834 671 −0.488 043 33

12[3] −0.262 005 046 760 8[3] −0.331 002 275 −0.488 046 82

15[1] −0.262 005 068 847 12[1] −0.330 998 375 −0.488 063 44

15[2] −0.262 005 068 848 12[2] −0.330 999 709 −0.488 065 13

15[3] −0.262 005 069 384 12[3] −0.331 016 414 −0.488 065 22

Exact −0.262 005 070 232 975 7 −0.331 017 308 −0.488065 357 8

In the case of systems with two identical particles, we
shall follow the notation used in atomic systems [36],
calling ρ12(r) = ρ13(r) ≡ ρ(r), single-particle density
and ρ23(r) ≡ h(r), intracule density. These functions are
given by

ρ(r) = e−2γr
2N∑
k=−1

akr
k + e−2αr

2N∑
k=−1

bkr
k

+ e−2βr
2N∑
k=−1

ckr
k + e−(α+β)r

2N∑
k=−1

dkr
k (8)

with a−1 = −(b−1 + c−1 + d−1), and

h(r) = e−2αr
2N∑
k=−1

fkr
k + e−2βr

2N∑
k=−1

gkr
k

+ e−(α+β)r
2N+2∑
k=0

skr
k (9)

with f−1 = −g−1 and we have considered α 6= β. It must
be stressed that all the coefficients involved can be analyt-
ically evaluated once the linear coefficients Cklm which de-
termine the variational wave function have been obtained.

3 Results

For each calculation we shall consider k+ l+m ≤ N (the
so called Pekeris shell), so N will limit the dimension of

the basis. For non-symmetric systems this dimension is
56, 165, 455, 680, 969, 1 330, 1 771 and 2 300 for N = 5, 8,
12, 14, 16, 18, 20 and 22, respectively and for symmetric
ones the dimension is 34, 252, 444, 715, 1 078, 1 729 and
2 856 for N = 5, 12, 15, 18, 21, 25 and 30 respectively.

We have used the following particle masses in atomic
units: mµ = 206.768 262, mp = 1 836.152 701, md =
3 670.483 014, mt = 5 496.921 58, mHe2+ = 7 294.299 62
and mπ = 273.126 95. Here we shall present the results
for the atomic systems, the positronium negative ion and
the hydrogen molecular ion in atomic units, for the exotic
system d+t+p− in proton atomic units (mp = 1, ~ = 1
and e = 1) and for the muonic molecular ions we have
used the muon atomic units (mµ = 1, ~ = 1 and e = 1).

To assess the impact of the third parameter on the
rate of convergence of the basis set we have studied sys-
tems with two identical particles. In this analysis we have
also considered the basis set with only one non-linear pa-
rameter. We have selected the ground state of both the
hydrogen atomic ion H− and the hydrogen molecular ion
H+

2 , which can be considered as prototype of those sys-
tems with atomic or molecular character, respectively. We
have also considered the 31S state of the helium atom and
the ground state of the positronium negative ion. In Ta-
ble 1 the energy is shown for these systems, in atomic
units, in term of the parameter N , i.e. the dimension of
the basis used. As we can see the rate of convergence for
the atomic systems and even for the positronium nega-
tive ion is practically unchanged when a second non-linear
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Table 2. Ground state energy in atomic units of the negative
two-electron ions of hydrogen, deuterium, tritium and e−e+e−.
A dimension of 2856 (N = 30) has been used.

α β γ E

H− 1.5824 1.0128 2.1319 −0.527 445 881 109

D− 1.7966 1.1198 1.9715 −0.527 598 324 684

T− 1.5300 1.0700 2.1900 −0.527 649 048 200

e−e+e− 0.9681 0.5884 0.9380 −0.262 005 070 232 35

Table 3. Different properties of the ground state of the
p+d+µ− and p+t+µ− molecules. Muon atomic unit are used.
The notation [x] means 10x. A basis set with 1330 elements
(N = 18) has been used.

p+d+µ− p+t+µ−

α 1.971 7 1.970 1
β 1.619 8 1.693 6
γ 1.970 1 1.947 6
E −0.512 711 796 501 2 −0.519 880 089 782 7
Ea −0.512 711 796 494 −0.519 880 089 775
η −1.3 [−12] −4.5 [−12]
〈r−1

12 〉 0.369 096 391 8 0.374 961 122 74
〈r−1

13 〉 0.641 146 371 6 0.633 391 625 57
〈r−1

23 〉 0.753 373 613 2 0.781 329 676 74
〈r12〉 3.100 710 403 2 3.036 524 320 8
〈r13〉 2.451 487 588 5 2.461 276 838 3
〈r23〉 2.087 699 148 7 2.002 011 275 8
〈r2

12〉 10.829 021 108 10.347 734 313
〈r2

13〉 8.033 494 170 1 8.031 625 759 1
〈r2

23〉 5.896 526 273 4 5.404 433 650 1
〈r3

12〉 42.147 963 916 39.195 293 000
〈r3

13〉 32.267 859 867 31.925 834 966
〈r3

23〉 20.654 709 308 18.058 059 477
ρ12(0) 1.461 712 7 [−5] 8.974 779 [−6]
ρ13(0) 0.117 709 737 84 0.113 638 765
ρ23(0) 0.173 456 214 30 0.189 382 104
ν12 5.918 955 6.656 663 79
ν12(exact) 5.919 183 31 6.656 690 66
ν13 −0.898 788 597 −0.898 788 471
ν13(exact) −0.898 792 878 −0.898 792 878
ν23 −0.946 672 672 −0.963 748 657
ν23(exact) −0.946 671 431 −0.963 648 333

aBishop, Frolov, and Smith, (1995) [6].

variational parameter is considered but it is appreciably
improved when the third non-linear variational parameter
is included. This behavior is very different in the molec-
ular case: the main improvement is obtained with the in-
clusion of the second non-linear parameter, and the third
one does not affect in an appreciable manner to the rate of
convergence. So we can conclude that the basis with two
non-linear variational parameters is enough to account for
those systems with a molecular character because it can
describe adequately the interparticle distribution of the
two heavier particles [14]. However the basis with three
non-linear variational parameters is specially adequate to
study those three-body Coulomb systems with an atomic
nature since the third parameter takes into account the
different screening felt by the two electrons. This effect
is enhanced for excited states of atomic systems as we

Table 4. Different properties of the ground state and the first
excited state of d+t+µ− obtained with N = 18 for the former
and N = 22 for the latter. Muon atomic unit are used. The
notation [x] means 10x.

d+t+µ− d+t+µ−∗

α 2.231 0 1.669 1
β 2.088 5 1.254 3
γ 1.811 3 1.230 2
E −0.538 594 975 061 −0.488 065 357 850
Ea −0.538 594 975 0 −0.488 065 357 8
η 4.6 [−13] 1.1 [−11]
〈r−1

12 〉 0.403 825 669 07 0.243 933 337 6
〈r−1

13 〉 0.722 700 008 53 0.514 688 754 3
〈r−1

23 〉 0.758 315 610 66 0.705 375 299 0
〈r12〉 2.747 914 131 67 5.161 228 956 9
〈r13〉 2.117 912 246 54 3.933 235 695 9
〈r23〉 2.023 720 495 65 2.738 751 041 4
〈r2

12〉 8.287 325 300 53 30.631 300 03
〈r2

13〉 5.881 853 892 98 22.397 192 86
〈r2

23〉 5.397 057 113 85 11.760 494 07
〈r3

12〉 27.208 343 544 7 201.451 771 4
〈r3

13〉 19.740 231 101 7 154.628 511 7
〈r3

23〉 17.469 696 452 4 65.255 123 63
ρ12(0) 8.871 194 77[−7] 7.411 555 8 [−7]
ρ13(0) 0.154 525 544 0.107 232 991 7
ρ23(0) 0.174 514 666 0.178 757 429 9
ν12 10.643 4 10.656 0
ν12(exact) 10.644 186 70 10.644 186 70
ν13 −0.946 671 574 −0.946 671 427
ν13(exact) −0.946 671 431 −0.946 671 431
ν23 −0.963 748 467 1 −0.963 748 254
ν23(exact) −0.963 748 333 5 −0.963 748 333 5

aAckermann, (1998) [26].

can notice from Table 1. We have also included in this
table two non-symmetric systems. For the π+µ+π− sys-
tem, the basis with three non-linear variational parame-
ters is also more appropriate than any other with one or
two non-linear variational parameter, as one should ex-
pect. However for the excited state d+t+µ−∗, the basis
with only two non linear variational parameters is enough
to describe it adequately because predominates its nearly
molecular character.

With the basis set proposed in this work we have stud-
ied some helium-like atomic ions of interest [10] and the
positronium negative ion. For these systems the double ba-
sis set of [5] and the exponential expansion of [16,21] and
[24] work with a great precision. We have also studied
several three body systems such as the muonic molecu-
lar ions p+d+µ−, p+t+µ− and d+t+µ− (for the later we
have also studied its excited state of S-type, denoted by
d+t+µ−*) and some exotic, weakly bound, systems such
as µ+π+µ−, π+µ+π− and d+t+p−. All those systems have
been extensively investigated, see e.g. [6,12,14,26,27].

In Table 2 we show very precise results for different
isotopes of hydrogen ion and also for the positronium neg-
ative ion. They are calculated with N = 30 and confirm
the exact estimate in reference [10] leading to a precise
value of the electron affinity for the three first systems.
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Table 5. Different properties of the µ+π+µ−, µ+π+π− and d+t+p− systems. We have worked with N = 20 for the first two
systems and with N = 22 for the last one. Muon atomic unit are used for the two first systems and proton atomic units for the
last one. The notation [x] means 10x.

µ+π+µ− µ+π+π− d+t+p−

α 0.666 2 0.630 5 1.020 8

β 0.267 0 0.219 8 0.574 1

γ 0.684 3 0.804 2 1.110 8

E −0.286 302 245 938 −0.331 017 308 039 −0.381 190 901 668

Ea −0.286 302 245 644 −0.331 017 170 37 −0.381 190 901 688

η 4.4 [−9] 2.9 [−8] −3.8 [−11]

〈r−1
12 〉 0.123 191 4 0.110 256 4 0.209 459 651

〈r−1
13 〉 0.181 353 4 0.151 782 2 0.326 582 947

〈r−1
23 〉 0.514 442 5 0.620 508 8 0.645 258 508

〈r12〉 13.206 497 9 17.285 475 6.533 298 463 11

〈r13〉 12.448 081 6 16.836 055 5.822 463 522 00

〈r23〉 3.142 001 875 2.541 693 2 2.535 959 189 75

〈r2
12〉 274.296 385 514.465 76 57.621 789 995

〈r2
13〉 265.209 703 509.112 52 52.355 973 542

〈r2
23〉 14.492 1503 9.263 489 1 9.369 5947 383

〈r3
12〉 8 293.45 22 752.438 676.620 179

〈r3
13〉 8 193.69 22 681.597 645.746 251

〈r3
23〉 92.811 59 46.334 165 46.657 100 50

ρ12(0) 1.102 270 5 [−4] 1.302 018 9 [−4] 1.972 019 440 [−4]

ρ13(0) 7.197 965 3 [−3] 6.650 678 0 [−3] 2.650 206 643 [−2]

ρ23(0) 4.953 514 06 [−2] 8.263 907 6 [−2] 0.103 572 524

ν12 0.568 338 0.566 932 1.198 403 09

ν12(exact) 0.569 138 727 0.569 138 727 1.198 636 68

ν13 −0.499 819 1 −0.568 020 9 −0.666 550 319

ν13(exact) −0.5 −0.569 138 727 −0.666 556 352

ν23 −0.569 139 250 −0.660 465 790 −0.749 607 103

ν23(exact) −0.569 138 727 −0.660 466 329 −0.749 606 695

aBishop, Frolov, and Smith, (1995) [6].

Different properties obtained from the best wave func-
tion are shown for the non-symmetric systems in Tables 3–
5. In these tables the particles 1, 2, 3 coincide with those
written in the first, second and third place, respectively.
Some quantities there reported are the energy, E, of the
system (using units that consider the mass of its lightest
particle equal to one), and the virial factor η defined by

η =
〈V 〉
〈T 〉 + 2 (10)

where 〈V 〉 and 〈T 〉 are the expectation values of the poten-
tial and kinetic energy, respectively. The difference with
respect to zero (i.e. the exact value of η), is a measure of
the quality of the solution found. Some other quantities
are the expectation values

〈rnij〉 =
∫
rnijρij(rij)drij ; n = −1, 1, 2, 3 (11)

for the three different pairs and the values ρjk(0) and
νjk = ρ′jk(0)/2ρjk(0). This last quantity is the two body
cusp ratio for particles j and k, whose exact value, for
a general three body Coulomb system of masses mi and

charges qi, i = 1, 2, 3, is given by [37]

qjqk
mjmk

mj +mk
· (12)

An additional test for evaluating the quality of the solu-
tions can be performed by studying how well the two body
cusp ratios are satisfied. A comparison with other results
in the literature (see Ref. [6] and references therein) shows
an improvement in the values of the energy. This also ap-
pears for the other quantities as η and νij .

4 Conclusions

We have introduced a new Hylleraas three-parameter basis
set to study S bound states of three-body Coulomb sys-
tems. Although it can be utilized for studying any type of
these Coulomb systems, the greatest improvement appears
in studying excited states of atomic systems in which the
electrons feel a different screening each one, and mainly
in studying non-symmetric Coulomb systems, i.e. those in
which all the particles are different. This basis allows us
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to obtain analytical expressions for the interparticle dis-
tribution functions and to perform calculations for any
number of states of the basis. The results obtained for
the eigenvalues are the most accurate in the literature for
the non-symmetric systems here studied. This basis also
provides accurate values for the cusps of the densities im-
proving previous results.
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